Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2.

نویسندگان

  • Weimin Li
  • Marco Petrimpol
  • Klaus D Molle
  • Michael N Hall
  • Edouard J Battegay
  • Rok Humar
چکیده

A central regulator of cell growth that has been implicated in responses to stress such as hypoxia is mTOR (mammalian Target Of Rapamycin). We have shown previously that mTOR is required for angiogenesis in vitro and endothelial cell proliferation in response to hypoxia. Here we have investigated mTOR-associated signaling components under hypoxia and their effects on cell proliferation in rat aortic endothelial cells (RAECs). Hypoxia (1% O(2)) rapidly (>30 minutes) and in a concentration-dependent manner promoted rapamycin-sensitive and sustained phosphorylation of mTOR-Ser2448 followed by nuclear translocation in RAECs. Similarly, hypoxia induced phosphorylation of the mTORC2 substrate Akt-Ser473 (3 to 6 hours at 1% O(2)) and a brief phosphorylation peak of the mTORC1 substrate S6 kinase-Thr389 (10 to 60 minutes). Phosphorylation of Akt was inhibited by mTOR knockdown and partially with rapamycin. mTOR knockdown, rapamycin, or Akt inhibition specifically and significantly inhibited proliferation of serum-starved RAECs under hypoxia (P<0.05; n> or =4). Similarly, hypoxia induced Akt-dependent and rapamycin-sensitive proliferation in mouse embryonic fibroblasts. This response was partially blunted by hypoxia-inducible factor-1alpha knockdown and not affected by TSC2 knockout. Finally, mTORC2 inhibition by rictor silencing, especially (P<0.001; n=7), and mTORC1 inhibition by raptor silencing, partially (P<0.05; n=7), inhibited hypoxia-induced RAEC proliferation. Thus, mTOR mediates an early response to hypoxia via mTORC1 followed by mTORC2, promoting endothelial proliferation mainly via Akt signaling. mTORC1 and especially mTORC2 might therefore play important roles in diseases associated with hypoxia and altered angiogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension.

BACKGROUND Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiological components of pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (PAH). The role of the distinct mammalian target of rapamycin (mTOR) complexes mTORC1 (mTOR-Raptor) and mTORC2 (mTOR-Rictor) ...

متن کامل

From TOR and SMAD, why HIF-1α can be bad.

TRANSFORMING GROWTH FACTOR (TGF)is a pleiotropic cytokine that regulates cell growth, differentiation, proliferation, immune response, and extracellular matrix remodeling; it plays a pivotal role in fibrosis in multiple organs (1). TGFsignals via type I (T RI) and type II (T RII) receptors. Binding of TGFto T RII, a serine/threonine kinase, recruits T RI to form a heteromeric ligand-receptor co...

متن کامل

TGFβ-Induced Deptor Suppression Recruits mTORC1 and Not mTORC2 to Enhance Collagen I (α2) Gene Expression

Enhanced TGFβ activity contributes to the accumulation of matrix proteins including collagen I (α2) by proximal tubular epithelial cells in progressive kidney disease. Although TGFβ rapidly activates its canonical Smad signaling pathway, it also recruits noncanonical pathway involving mTOR kinase to regulate renal matrix expansion. The mechanism by which chronic TGFβ treatment maintains increas...

متن کامل

Endothelial Cell mTOR Complex-2 Regulates Sprouting Angiogenesis

Tumor neovascularization is targeted by inhibition of vascular endothelial growth factor (VEGF) or the receptor to prevent tumor growth, but drug resistance to angiogenesis inhibition limits clinical efficacy. Inhibition of the phosphoinositide 3 kinase pathway intermediate, mammalian target of rapamycin (mTOR), also inhibits tumor growth and may prevent escape from VEGF receptor inhibitors. mT...

متن کامل

The Expanding Role of the mammalian Target of Rapamycin Complex 2 (mTORC2) in Cellular Metabolism

The mammalian Target of Rapamycin (mTOR) nutrient-sensing pathway plays a fundamental role in cell growth, and proliferation, as well as in tumor metabolism. mTOR is the catalytic subunit that nucleates two functionally and structurally distinct complexes namely; mTORC1 (mammalian Target of Rapamycin Complex 1) and mTORC2 (mammalian Target of Rapamycin Complex 2). mTORC1 integrates inputs from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 100 1  شماره 

صفحات  -

تاریخ انتشار 2007